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Abstract

Heavy tailed distributions enjoy increased popularity and become matiyrea
applicable as the arsenal of analytical and numerical tools grows. dlagykey
roles in modeling approaches in networking, finance, hydrology to ramhe
few. The tail parametet is of central importance as it governs both the existence
of moments of positive order and the thickness of the tails of the distribution.
Some of the best known tail estimators such as Koutrouvelis and Hill arer eith
parametric or show lack in robustness or accuracy. This paper geavalshift
and scale invariant, non-parametric estimator for both, upper and tmueds for
orders with finite moments. The estimator builds on the equivalence betaiten
behavior and the regularity of the characteristic function at the origin ehié\ses
its goal by deriving a simplified wavelet analysis which is particularly suited to
characteristic functions.
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1 Introduction

Heavy tailed distributions enjoy increased popularity aedome more readily appli-
cable as the arsenal of analytical and numerical tools gravrey play key roles in
modeling approaches in networking, finance, hydrology tmedut a few applica-
tions. Examples of interest include the stable, the Panetbcartain extreme value
distributions. The tail parameter is of importance in its own right as the central
parameter for several of the mentioned distributions.

In addition, it sets the upper bound for the ordebeyond which moment&[| X |"]
do not exist. Indeed, recall that a random variaklés calledheavy tailedwith tail
parametery if

Pl|X| > 2] = 2~ L(x) ()

whereL is a slowly varying function, i.e L(tz)/L(z) — 1 asz — oo for anyt > 0.
It is called Pareto, ifL(x) is a constant and (1) holds for &it| > §. For the Pareto
distribution, it is clear that moments are finite exactly aptdera, a fact that can be
generalized using standard facts.

The issue of finiteness of moments is particularly pressinggw of the abundance
and usefulness of moment estimators. They are not only irapbfor parameter es-
timation, when the underlying distribution law is known tlalso for data fitting and
model selection, i.e., identifying unknown distributioinem sample data. To recall
but two instances, the Kurtosis statistic hypothesis tesblves Gaussianity versus
non-Gaussianity, whereas for a Poisson random variable mme@ variance should be
equal. In addition, many applications integrate momeritreges as a crucial ingredi-
ent. That is the case in multifractal analysis, wheregth¢h order absolute moments
of the increments (or the wavelet coefficients) of a procedd taluable information
on the local behavior of its paths.

Pathologies emerge when moments are infinite or not definezh as for the
Cauchy distribution which has infinite second moment andetindd mean. As in-
finite moments may degrade the performance of estimatossitpy introducing some
systematic errors) or reduce the speed of convergence itinjphaws, special atten-
tion must be dedicated to their theoretical existence. \ég ece more to multifractal

analysis where infinite moments may indicate phase transitihat are highly infor-



mative about the process regularity.

All this motivates the development of statistical methamddtermine the finiteness
of moments of a distribution given finite sample data [10]yengrecisely, to determine
the (positive and negativeyitical order A=, A* of a distribution, by which we mean

here
At 2 sup{r > 0 : E[|X|"] < oo}
A~ 2 inf{r<0: E[X|] < oo}.

Related estimators will not only provide useful for the fgdlrameter, but also for the

()

analogous parameter governing the distribution arounal, zerany center of choice
after a translationX — X,. To this end, we propose an approach that combines two
facts.

First, the characteristic functiofi(u) = Elexp(iuX)], being the Fourier trans-
form of the distribution ofX', has as many continuous derivatives at zero as the dis-
tribution has finite moments of positive orders. In particulfor evenk we have
#*(0) = *IE[X*] whenever one of the two is defined [21]. A crucial ingredient
to our methodology is a more general relation of this sortthl®end, we resort to the
concept of theharacteristic exponent* of a distribution by which we mean the (gen-
eralized) degree of Lipschitz continuity of the real parthad characteristic function at
the origin. Provided in lies if0, 2) the characteristic exponent can be written simply
as

pt =sup{r >0:1—-Regp(u) =0(u")asu — 0"} (3)

It follows from basic known facts that
At =pt (4)

as long as these values lie betwdrand2. Estimation of the critical exponent can
then be achieved via the regularity ©f Replacing the random variablé by 1/ X we
find p~ and an estimate fox~—.

Part of the paper will address the extension of this appréacbrders larger than
2 from the estimation point of view; the mathematical founafatof this extensions
is developed in a companion paper [24] and can also be fou[8].iWhile effective
for model selection, the characteristic exponent providesever, only bounds for the

critical order in that cases™ < A* < [p*] + 1 (see corollary 6).



Second, having reduced the problem at hand to an estimatitmeal regularity,
it proves effective to leverage the power of the waveletdfamm. In a nutshell, the
decay of the wavelet coefficients of a functidfg] (u, s) for u close to) provides quite
precise information on the local regularity of the functipat0. As will be established,
this wavelet analysis becomes particularly simple for arattaristic functionp and
requires only the knowledge &¥[¢](0, s).

In summary, the recipe of our estimator fof is dramatically simple:

e From the sample data sgX,,, n = 1,..., N} compute solely the wavelet coef-
ficients at zero of the empirical characteristic functigfu) = N~ >onexpliuX,},
ie., W[(f)] (0, s); as it appears, this amounts to computing the non-parameti

biased kernel estimatdf’?(s):

N

= 1

W(s) = 5 D W(sXe) 5)
k=1

where the kernell is a the Fourier transform of a semi-definite wavelet (see

text).

e The estimators of the two characteristic exponents,;iAfeandpA— are obtained
from simple linear regressions big /W(s) againstiog s within some predefined
scale intervals. These estimators are scale-invarianteanade shift-invariant,

and are asymptotically un-biased.

e Since wavelets can not capture regularities higher thanake regularity Ny,
the procedure should be repeated with wavelets of incrgasgularity (reason-
ably up toN,, = 4).

We will demonstrate the effectiveness of this estimatokilog at symmetrical sta-
ble distributions in comparison with well establishedmstiors such as Koutrouvelis’.
Recall that stable distributions appear as limiting disttions of properly renormal-
ized sums of iid random variables with (possibly) infiniteigsace. The symmetrical

stable laws are defined by
¢x (1) = Elexp(iuX)] = exp(—o®[ul® +ipu) (6)

and their heavy tail parameter is known to be equal {85]. Combining this with the
fact that their densities, though not explicitly known, aggnmetrical and uni-modal,



they possess finite absolute moments of ordexactly forr € (—1,«). On the other
hand, the Taylor expansion ekp(-) implies readily thaRe ¢(u) = 1 — o®|u|* +
O(u?), which verifies (4).

2 Background

In this section we collect well known facts on the existentmoments as well as the

wavelet analysis of irregular signals.

2.1 Tail Estimators

Most well-known tests for the existence of moments emerdeygzroducts of tail es-
timators and appear in parameterized settings. For instéwlan in [20] proposed a
maximum likelihood estimator for general alpha-stabledgimcluding Gaussian and
Cauchy) based on a large sample data set. As no closed fosts éar these dis-
tribution functions (aside from some particular rationalues of the parameters), he
proposes an efficient numerical resolution of the maximielitiood equation.

Previously, Koutrouvelis [16] and Mc Culloch [18, 19], angomany others, have
proposed two different estimators of the parametexs-e$table laws, based either on
Pareto approximation far—stables tails, or on the analytic form of the characteristic
function.

More recently, Bianchi and Meerschaert [3] proposed a aatadestimator of tail
indexa, based on the asymptotic of the sample variance. This restistator has the
advantage over Hill estimator [11], to be shift and scal@airant, and also to perform
well in situation where the Hill estimator is inefficient,maly for stable distributions
with 1.5 < o < 2.

Starting from a closed form for the characteristic funct{oecall (6)) or in some
cases a numerical approximation of the density functiothalte methods aim at find-
ing the minimum of the log-likelihood function, given thetda As a result, it is well
known that these approaches are optimal in the sense of onimivariance and achieve
the Crangr Rao bound [6, 16, 20]. However, being parametric, thesma®rs may
perform poorly whenever the true underlying distributiolesnot match the model.

In this paper, we proposereon-parametricestimation procedure with convincing

robustness properties for the characteristic exponghtand p~ which do not rely



on any assumption on the density model. In particular, nehdtie semi-parametric
assumption of heavy tails (1) is made and can be tested giapiroach. The resulting
estimates can be used for estimating the tail parametetharobidy parameter.

Notably, both exponents are estimated in the same procelhateed, the problem
of existing negative moments could be reformulated withngpe change of variables
x — z~!, as a positive moment existence problem. Then, we couly applestimator
to X ~! instead ofX directly, allowing thus for determining a lower negativeund for
the existence of ™ _ |z|~"dF(z), r > 0. However, as we will demonstrate both, the
positive and the negative characteristic exponent can dlei@ed at once, using the
same procedure applied to the same data set of i.i.d. saffilds—1, .

2.2 Characteristic Function and Moments

Let us recall a well known relation between high order moment distribution func-
tion F(z) of a random variableX and its so-callectharacteristic functiorwhich is
defined as:

d(u) = [Ee™* = /e“””dF(x). (7)
Using simple duality argument between time and frequenieytbe Fourier transform
in (7)), the behavior of the characteristic function at thigia relates to the tail be-
havior of the distributior¥” for large|z|. In particular, whenever the integeith order

moment ofF’ exists, thep-th derivative of¢ at the origin exits as well and they simply
relate as follows

du?P

60 = L gw)| = rEx?) =7 / 2PdF (). ®)

u=0
This justifiese to be also referred to aslaoment generating function

Conversely, whep is even existence of () (0) implies existence olE[X?]. No-
tably, pathologies can occur wheis odd. As the example @f(u) = C~1 3°77, cos ju/(j* log j)
demonstrates (cpre. [15, p. 411]), the existence &f(0) does not necessarily guar-
antee the existence @f[X].

As we strive towards a generalization of a relation betweements and charac-
teristic function to non-integer orders> 0, let us first introduce the absolute moments
of orderr € IR:

My 2 (X = [ ladF (@) (©)
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where we allow the valueo. Let us emphasize th@i[X?] exists if and only ifM,,
is finite, in other words, if and only if botlE[max (X, 0)?] andIE[max(—X,0)?] are
finite.

We first recall the definition of ™ in (2) and note a simple fact:
Lemma 1 For any distributionF’ we have

AT = sup{r>0: M, <o}
= sup{r>0:1—-F(z)+ F(—x) =0O(z~") asz — o} (10)

Note that a priori there is no information on the behaviorli@)(for » exactly equal
toAt.
Proof

To obtain one half of the lemma recall the Markov inequalityieh states that
P[IX|>a] <a "E|X|", Vr>0,Va>D0. (11)

Consequentlyl — F(a) + F(—a) isO(a™") for all » > 0 with finite M,.. The other
half of the lemma follows from theorem [15, Th. 11.3.1] whithtes that — F'(a) +
F(—a) = O(a™") implies thatM,. is finite for all»" < r. o

Next, we apply a theorehdue to Binmore and Stratton [4, 15] which relates the
Lipschitz regularity of¢ at the origin to the tail decay of for orders less thag.
Recalling the definition of the Lipschitz exponentggiven in (3) we find:

Corollary 2 If either AT or p* is known to be strictly less thanthen:
At =pt. (12)

With this in mind, we present wavelet theory in the next sectiith particular em-

phasis on their natural abilities to detect and estimatéotted regularity of a function.

2.3 Wavelets and Local Regularity

A wavelet analysis consists in a linear decomposition ofjaalig onto a set of analyz-
ing functiong

{Grs(u) 2 5|20 ((u —t)/s), (t,5) € R x R} (13)

1let0 < r < 2. Then,1 — Re¢(u) = O(u") ifand only if P[|X| > x] = O(z~").
2We restrict ourselves to the case of real continuous watrelesforms, even though all theoretic results
we present here transpose directly to the discrete framegfodal orthogonal wavelets.




through the inner product

Wiglt:5) 2 [ o) visu)du (14)
Conceptually, this transform can be viewed as a partitiprah the time-frequency
space, wher&/[g](t, s) measures the correlation betweeand each elementary atom
Yrs. All of these time-frequency cellg, s are time-shifted and scale changed ver-
sions of a unique prototype functiain Therefore, for the time-frequency tiling to be
consistent, the mother wavelet must be localized in the &ngkin the frequency do-
main simultaneously. Formally, these constraints trasspo the following: We call a
wavelety) admissible of regularityV,;, if it has the following three properties:

o [WB()] < CL(L + t)~Netfor k =0,... Ny,
o [thy(t)dt=0fork=0,... Ny, —1,and
o IO vdy = [° ¥ (—v)|?/vdy = 1.

Now, because equation (14) conveys information on the loseillatory behavior
of the analyzed functiom, it is possible to assess the local Lipschitz exponenj of
from the dynamic of wavelet coefficients across scales. Akrfact reads as follows
(see [12, 14], also [23]):

Theorem 3 Consider an admissible wavelét of regularity N, > r. Assume that
g(u) — g(0) = O(u") asu — 0. Then, there is a constant such that

[W(g)(0,s)] < Cs" ass— 0%, (15)

Reciprocally, somewhat more precise knowletieg: — 0 of the decay of¥ [g](u, s)
for all u allows to determine the local continuity of the functigfl 4, 13]. As we will
elaborate, a certain type of wavelet analysis of the Liggaontinuity of characteris-
tic functions simplifies dramatically due to the fact tha thavelet transform is in this
particular case maximal at the origin.

3For a simplified version considér < r < 1. The following condition implies thag(u) — g(0) =
O(u™) [12, 14, 13]: there exist numbe€s andg < r such that

|ul?

log |u|

[W(u,s)| < C (ST + ) , fors — 07. (16)



3 Wavelet analysis of Characteristic Functions

We start by demonstrating how the wavelet analysis of chariatic functions can be
simplified tremendously.

3.1 Semi-definite Wavelets

As it turns out it is particularly simple to estimate the watecoefficients of a char-
acteristic function provided the wavelgtis semi-definitdoy which we mean that its
Fourier transform¥ (v) = [ ¢(t) exp(—itv)dt is real and does not change sign. In
other wordsy is elther positive semi-definite, i.e%(-) > 0, or it is negative semi-
definite, i.e.,.¥(-) < 0. Examples of such wavelets are the derivatives of even afder
the Gaussian kernel: set

A dzr

Vp(t) = cp— 5 de2r exp(— 2t2) (17)

wherec, is a normalization constant andis a positive integer. One finds the semi-
definite Fourier transform

-V

2
U, (v) = Cp(—1)Pv* exp <F> . (18)

Lemma 4 If the Fourier transform¥ of the wavelet) is real, square integrable and
semi-definite then
[W[Re ¢](t, s)| < [W[Re¢](0,s)] (19)

In other words, for fixed scalethe modulus of the wavelet transform of the real part
of a characteristic function is maximal @t 0 for semi-definited.

Proof

Recall that|s|~*+((u — t)/s) and ¥ (sz) exp(—itx) form Fourier pairs, as well ag
andF'. Applying Parseval’s identity yields

WiRedl(t:s) = Re [ Js1u((u—0)/s)o(u)du
= Re/\lf(sx)exp(—itx)dF(x) (20)

Using the simple estimat®e x| < |z| as well as the fact thak is semi-definite and
does not change its sign we obtain

WRe ¢](t, s) /|\I' sz) exp(—itz)| dF (x /|\I' sz)|dF (z

9



- ' / W(s)AF (2)] = [WIRe (0, 5) 21)

as desired. &
As a corollary from (20) we note

WiRedl(0.5) = [ W(sa)dF () = EW(sX) (22)

3.2 Critical orders smaller than 2

We are now in a position to combine the above results into tiieipated tight con-
nection between a wavelet analysis and the critical okderFor orders larger tha?

the connection is less tight, yet still useful (see Secti@).3

Theorem 5 Consider an admissible, semi-definite wavetedf regularity N, > 2.
Then,

M =pt =sup{r >0 : [W[Re9](0,s)] < Cs" fors — 0"}, (23)
provided that either term is known a priori to be strictly $ethan2.

¢ From a wavelet point of view we can not stress enough thattibee result owes
its simplicity to the fact that the wavelet coefficientsRd ¢ are maximal af. Also,
At = pT™ was noted earlier.
Proof
Due to lemma 4, the condition (16) of footnote 3 follows Ny from W (0, s) < Cs".
The extension t®) < r < 2 exploits the symmetry oRe ¢ to conclude that the best
polynomial approximation oRe ¢ of degreel is still constant (for a full argument see
the companion paper [24] or [9]). &

3.3 Critical orders higher than 2

Attempting to extend the appealing three-fold connectidh@orem 5 to orders higher
than2 we face two hurdles, one surmountable due to special piepert the charac-
teristic function, the other more profound.

10



For a better understanding, we need to extend the conceppséhitz continuity
to higher orders. To this end, we define the Taylor rest-tdroraer2p at zero as:
t2k

it O (24)

Qop(t) =Reg(t) —1- )

k=1

P

whenever it exists. Thus, the general definitiopbfreads then as
pT =sup{r >0 : Qap(u) = O(u") asu — 0%, for2p <r <2(p+1)} (25)

Also, we require a more general version of corollary 2. Trghbr order exten-
sion of Binmore and Stratton [4] is found in Kawata [15] anthtes the finiteness of
moments, i.e., the value of" to a smoothness condition ¢k,

The first hurdle concerns the fact the wavelet analysis isngefal tool for assess-
ing the local degree of regularity, but does in general nloinato make conclusions
on differentiability of the analyzed function. To make thairg, functions which be-
have at zero ag- |>° (modulo a polynomial) but have only one derivative are gasil
constructed. In other words, the corrective polynomialstioet have to be the Taylor
polynomial as in (24). This difficulty is overcome by proviegistence of moments
directly via monotone convergence from the decay of apjeitmwavelet coefficients
(see the companion paper [24] or [9]). Finite moments impgntthaty was indeed
differentiable and that wavelet analysis indeed refle@ségularityp™ of Q5.

The second hurdle stems from the fact that Kawata’s smosthzenditiofi (which
allows to compute\*) is in terms of an integral and weaker than the Lipschitz oo
(25) (which is the one resulting from wavelet analysis). ld@er, we are able to obtain
bounds. We state only the final result and leave mathematétalls to a companion
paper [24] (see also [9]).

Corollary 6 In general, the Lipschitz regularity of a characteristimfiion (25) is
related to the critical order of moments (2) via

pt <A< |pT]+ 1. (27)

Note that[p* | + 1 is the smallest integer strictly larger than.

4Assume thaty(2P) (0) exists. ThenM,. exists if and only if [15]

>~
/ pramy |Q2p ()| dt < oo. (26)
0

11



3.4 Negative Critical Orders

We are now interested in estimating the negative criticdepA~ defined in (2), of
a random variableX with densityd Fix (z). Let us define a new random varialife
using the one to one mapping froM to IR: ¥ = ¢g(X) = X~ 1. FixingY = y,
equationy = g(z) has only one rootr = y~*!, and|¢’(z)| = y?, from which we
deduce the distribution df , dFy (y) = y~2dFx(y~!). The negativeith order of X

simply corresponds to the positivejth order of random variabl¥:

E[X]) = E[[1/Y]] = E[ Y]], (28)

Therefore, to estimate™ (X) of X, we can directly apply general results obtained

in Section 3.3 for positive higher orders, to get

AT(X) = =AT(1/X) (29)

4 Estimation procedure

In this section, we elaborate on the implementation of otimegor for A, in partic-
ular the choice of wavelet and scales to consider, its basjstness and optimality

properties.

4.1 Implementation

GivenX;, (: =1,...,N) aset ofN observed i.i.d. samples of the distributiof'(z),

we use the empirical estimator for the characteristic fionct

N
a(u) 2 on(u) 2 % Zexp{iuXk} (30)
k=1

For our purpose, we need to evaluate this function on a popampled interval
uj =j-ou, j=0,..., K — 1, that we will make more precise later.

We now recall some convergence properties of this empidatacteristic func-
tion (see [7, 8] for details), justifying its use in the re$toor method. Firstgy (u)
converges almost surely whé¥i goes to infinity towardg () in the L>° sense, over

some finite intervall’

sup |¢n(u) — ¢(u)| — 0. (31)
lu|<T

12



Second, consider the random procEggu) = v/ N (¢ (u)—¢(u)) and lety (u) =
Y (—u) be a zero mean complex Gaussian process with covarianceselty (u)Y (v) =
d(u+v) —¢(u)p(v). Then, the sequendédy (uy), Yy (us2), - .., Y (u,) convergesin
distribution toY (u1), Y (u2), . .., Y (tm)-

It is also shown in [8] thal’y(u) converges weakly towardg («) in any finite
interval, provided thalE| X |'+9 < oo.

Next to consider is the wavelet decompositiorgf(u) which simplifies to
Wipn](t,s) = /wt,s(v) ¢n (v) dv

= %Z/%‘(U) exp{iXyv} dv
k

_ %Zexp{ixkt} / (u) exp{iXpsu}
k

— %Z\Il(s-Xk)exp{ith}.
k

Two-point Estimation Procedure
(1) Assuming that is real, semi-definite we finally arrive at the surprisingins
ple estimator for the maximal wavelet coefficientRd ¢ of scales, which is the main

ingredient in our method:
e N
W(s) 2 W[Re én](0,s) = (1/N) )Y (s Xp). (32)
k=1

(2) Finally, according to theorem 5 the characteristic expbpéris estimated from
the powerlaw exponent which steers the decai//V\c(fs). An estimator of the critical
moment order results from either corollary 2 or corollaryréking the logarithmic of

this powerlaw model yields the linear trend
log /W(s) ~ ,0/\"" log s + log C, (33)

where;/f\r is simply obtained via a standard (weighted) linear regoasgrocedure of
log W(s) againsts restricted to some scaling interv@ah,in, smax) to be specified.
RobustnessSince we assume nothing on the distribution we obtain thusma n
parametric estimator. We also note immediately, that thimation can benade shift
invariant by subtracting the sample average from the détand that it isscale invari-

ant

13



Indeed, consider the daffl; = aX;. ThenW[X’](s) = W[X](as). Rewriting
log(s) aslog(as) — log(a) we find that the regression data ®f and X differ merely
by a shift, leading to the same estimated least square slope.

4.2 Statistics of the estimator

Let us study the bias of both, the simple estimator of the Veaweefficient (32) itself,
as well as the derived estimation of the scaling exponent (33
Since all observations are drawn from the same distribpti@may write

N
E[W(s)] = %ZIE[\I’(SXIG)] — E[U(s- X)] = / U(sz)dF(z).  (34)
k=1

This shows that as an estimator of the wavelet coeffidi€ii0, s) itself, W(s) is un-
biased. However, as we will show, a bias is introduced as wmate the powerlaw
decay ofiW (0, s) through the powerlaw decay d:f/f?(s). This result is similar to the
one obtained in [1] where it is shown that using log-pericdogs (Welch estimator)
to analyze processes with spectra of the tyge f) ~ o2|f|~“ leads to a systematic
bias on the estimate @f. On the other hand, using a wavelet-based spectral analysis
(the frequency marginal of a wavelet decomposition) yialdasymptotically unbiased
estimator for exponent. This is due to the constant relative bandwidth of wavelets
that performs a logarithmic tiling of the time axis. The risig time-bandanalysis
has joint time and frequency resolutions that match ndjupalwerlaw decays as in
T'x(f), orin our case, im(u) around the origin.

Estimating the critical order: A showcase To explore the properties of an estimator
of the characteristic exponepit through the wavelet coefficients we first treat a simple

case where we assume that

e the distribution is Pareto, i.eE’(z) = px(z) = coz= 2! for |z| > ¢ and

vanishes elsewhere, with = ad?;

o the wavelet is bandlimited, actually require thiaty) = 0 for |v| < v, where

v > 0 is some constant.

Such wavelets are known to exist. For instance, by constryahe auto-correlation
function of any admissible and band-limited wavelet islftaesymmetric in time, band

14



limited and positive definite admissible wavelet.

Inserting the particular form gfx («/s) into the bias formula (34) we can extract
the scales through a substitution. Providedis small enoughi.e.,s < v/J, the
remaining integral is independent of the scale due to thel fiaritation of . This
reads as:

E[W(S)] /5 U(xs)cor “tdr = SC“./(S T(y)eoy " Ldy

S

5 / U(y)eoy 'y = Cy(a) - s°. (35)

Thus, the exact powerlaw of the density translates into cﬁ@(s) thanks to the
band limitation of the wavelet. Apart from this show-caggpr@ximatively the same
decay ofW(s) can be observed under much less restrictive assumptionse ase
about to show.

Estimating the critical order of fat tail distributions ~ We relax the above assump-

tions to the following scenario:

e We consider a simple, heavy tailed probability density fiorcwhich is sym-

metrical, constant around the origin and which follows aactyowerlaw in the

tails:
roN Joa if |z] <4,
F'(x) = px(z) = { C2|m|—a—1 if 2| > 4, (36)
where
— i @ and — 6_a L
7% ato 2T Traj
e The wavelet is sufficiently regular:
U(v) < dylv|Ne. (37)

Let us comment on this choice. Despite its special form, diggibution will be
sufficient to explore general fat tail distributions. Clgait has finite moments of the
orders between~ = —1 and\* = a. Also,v = px(8)/px (0) is the ratio of the tail
amplitude to the constant value around zero. Clearly, tim8¢37) is restrictive only
at smallv, asV is integrable and must decay at infinity.
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To show thalE[W (s)] scales as®, we need to generalize (35) and split the integral
of (34) into two parts|z| < ¢ and|z| > §. We claim that the first part is of the order
sNv while the second term behavessisplus a term of the ordes™». In summary,
the wavelet estimator decays indeeds&swith an error term in the ordes’V+, which
may introduce a bias in the estimation)of = a.

Applying (37) we find

P b
/ U(sz)px(x)de < ¢ - / U(z)dr < e¢qp-26- dl/)éN”’ . gNv (38)
-5 -6

as claimed. Next, similarly to (35) we obtain

oo

/;O V(sz)px (v)dr = é/oo Y (y)px(y/s)dy = s* '02/ U(y)y * 'dy. (39)

5 sd

To the contrary of (35) this integral depends«©mrhus, we write it asfoOC — 056. The
first term is now a constant, leading to the announced behasi¢*. To estimate the
second term, we estimatiein a way similar to (38):

(85)N¢—a

s s
/ T(y)y *ldy < dy / yNey oy = dy (40)
0 0 N’d) -

Collecting (38) - (40) we find thdE[IW (s)] = As® + O(s"+). Bounding the error
relied on the regularity (37) of the wavelet, while the exsaling derives directly from

the exact powerlaw (36) of the distribution. We generalids tesult as follows:

Proposition 7 Assume tha¥ is positive semi-definite. Assume, the distribution has a
densitypx which can be bounded as follows:

<alz|7*"t for|x| > 6,
px(x){ >blz|7*"t for|z| >4, (41)
<c for |z| < 4.
Assume that the regularity of the waveleis larger than the critical order, i.e.N,, >
«. Then,
@ s+ 0(sV) > E[W(s)] = b-s* + O(sV), (42)
witha/b = a/b.
Proof

Sincewy hasN, vanishing moments we know that (37) holds. Proceeding amrdef
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we write
4

B - |

[ vapx@dr s [ wwps/od @)

ly|>sé

The first term is bounded from above @$s"+) as in (38). The second term maybe
framed using the tail bounds @i as

s al >s 1 /| s U(y)px (y/s)dy > s - bl, (44)
y|>s

where

s6

1:/ ‘I'(y)\yl“”‘ldyZ/ \I’(y)lyl‘“‘ldy—/ U(y)ly| = 'dy.
ly|>s6 —o0 —sd

Here, the last term can be bounded 3"+ ~¢) as in (40). It combines with the factor

s* of (44) to aO(s™+). So, only one term behaves gsand we find

E[W(s)] = As®+ Bs" (45)
where
a / U(y)ly| >ty > A > b~/ U(y)ly| " dy. (46)
A more careful computation reveals that
Ny+1 Ny~
B <26™ T e dy + 2ady (47)
v " (Ny —a)
¢
4.3 Numerical robustness
Provided that the observatiod§, (k = 1, ..., N) are un-correlated one finds easily
varW(s) = (1/N)var(¥(sX)). (48)

Moreover, under the assumptions of proposition 7 we corcthdtIEV (sX) ~ s®
and, considering’? as a waveletlE¥?(sX) ~ s*. Thus,

var(¥(sX)) = EU?(sX)— (E¥(sX))”
~ s*E¥(X) - s (E¥(X))>.
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To provide a more rigorous error estimate let us assume thatonsider the ele-
mentary, yet admissible, wavelet

_ -1/2 —1/2
¥(z) = Ay, w€ly=lvy—3N, vy + SN, (49)
0, otherwise.

This somewhat crude boxcar approximation for the wavelebimes reasonably
accurate for the derivatives of the Gaussian kethe(17) as we set, = /po /7.
Indeed,|¥, | reaches its maximal valug, (po? /m2)P exp(—p) at thisv,,. Clearly, the
approximation becomes more accurate as the regularitgases, i.e NV, — co.

For the box-car wavelet we get

- A2
variV (s) = (1/N)var(¥(sX)) = Ww (px [sX € Iy] — p% [sX € Iy]) .

Assuming an exact powerlaw for the tail as in (36) we may wptevided the scale is
sufficiently small, i.e.s < (vy — /Ny /2)/9:

(ru+3N, %) /s

px [sX € Iy) = / cox  ldr = 5% - 02/ y~ tdy.
(vu—3N,2)/s Iy

—1/2
p

Using the mean value theorem we may rewrite the integr@l;b’&fl -N wherey,,

is some number idy, thus,y,, ~ 1. Finally, givey) has unit energy, i.ed,, = Nq/l/4

varW(s) ~ # s (1 - %) (50)
P P g

For small scaless(— 0), the variance behaves like Wr(s) ~ O (s%). Figures 4.3(a)—
(c) show empirical variance vﬁ?(s) varying with parameter®/, s and N,;, attesting
the good agreement between experimental and theoretidtge

Let us now consider the new variabtey W(s). With a central limit theorem ar-
gument, we can say thﬁ(s) is asymptotically normal with meafy, ~ As* and
varianceo? ~ Cs®. Then, in first approximation, using a result on functions of
asymptotically Gaussian variables [21, 26], we conclu@&MgW(s) is asymptot-
ically Gaussian and

Elog W(s) ~ log IEW(S) ~log A+ «a - log(s)

(51)
varlog W (s) ~ [IEW (s)| "2varW(s) ~ B/A - s~
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(a) Empirical variance vﬁ(s) (b) Empirical variance vzi/f/\(s)

log N log s

(c) Empirical variance v@(s) (d) Empiricallog IEW(s)

=) -7 K3 3 4 3 2 E) 0 1

log s

—2
Nw X Iw

Figure 1: Experimental verification of expressions (50) &it). (a)—(c): Empirical
estimates of vai’ (s) estimated over a set of 100 independent realizations sthble
processes of lengtiv. Evolution of vaW(s) is plotted as a function of: (dpg N
(o = 1.2, Ny, = 4, s = 0.0087); (b) logs (a« = 1.2, Ny, = 4, N = 2); (c) Ny,
(« = 1.2, s = 0.0087, N = 2'%). (d) Empirical estimation ofog]EI//V\(s) vVersus
log s. The error bars correspond to the standard deviatidngDW(s). The dashed
line maierializes the theoretical ldwng ]E/W(s) =a-log(s)+C' (e =1.2, Ny =4,
N =2,

19



See figure 4.3(d).

To summarize the above, we propose to estimate the chastictexponentp™
via the estimator of the scaling exponentof the wavelet coefficients in 51. For
(asymptotically) Gaussian random variables such as 5Imtrémum likelihood es-
timator of « is simply obtained from a linear regressionlogﬁ/\(s) againstlogs, as
already suggested in 33. Asymptotically, the resultingneste converges tp™. In
practice though, the finite size data set limits the regoessange to some interval
s € (Smin > 0;smax < 00). The important issue of properly choosing this scaling

region is treated in the next section.

4.4 Choice of the scale range

We have defined an estimator fot via a log-log linear fit. While in theory the wavelet
coefficients should decay as a powerlaw of the scale, we gratice faced with the
fact that the scaling deviates significantly from the thdoa¢ideal case for both large
and small scales. Here we discuss the reasons for this ieviatd explain how to

choose the scaling region.

4.4.1 Lower bound of scaling region

We have two different approaches to determine a lower boanthe scale range of
the linear regressiolog /V[7(s) versuslog s in (33).

The first one is based on a Shannon-like theorem. Our estireatonates the
singularity of the characteristic function at the origim practice, we use the em-
pirical estimator for the characteristic function, i.8(u;) = N~ > exp(iugX;).
The maximum variation of is controlled by the maximum value of;. There-
fore sampling¢ at a higher rate than approximately the Nyquist rae) ! with
X = max{X;, j = 1,--- N}, does not bring any finer information on the regularity
of ¢(u) atu = 0. On the contrary, when the analyzing scale goes below thermim
bounds,,;, = (X)~!, the measured regularity is overestimated, as the funaticier
analysis reduces to the sal&° componentxp (iu; X ), oversampled at the vicinity of
the origin. Thus, concordantly with theorem 5, wheins estimated from data below
this minimum scale bound it reflects the regulatiy, of the analyzing wavelet rather
than the targeted regularity of the characteristic fumctio
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The second approach starts from the expression (32). Im twdbe consistent, we
need to ensure that at least one sardp)dalls inside the equivalent support &f sx).
For smalls, only the largest values oX; are retained to enter the sum (32). As a
result, if X is the maximum sample of the serias, v, /s is thecentralfrequency of
the wavelet at scale We then waniX ~ vy, /s, which leads t i, ~ vy/X.

In summary, both arguments above lead to the same conclifgibthe lower cut-
off scale should be chosen proportionallyltoX. For the numerical analysis in this
paper we adopted:

Smin = 1/X. (52)

Using a stable law with index of stability (or shape paramete we present in
figure 4.4.2 the theoretical lower scale boung, = (X)~!. A linear regression
of log /W(s) versuslog s for s > s Yields an accurate estimate of the characteristic
exponenp™ = a. Moreover, on this same plot, we verify that fox s.,,i,, the wavelet
estimator/W(s) behaves likes™, in accordance with the aforementioned argument

that the function under analysis is now theé° exponentiabxp(iuX).

4.4.2 Upper bound and negative moments

As we saw, existence of moments is dictated by the tail det#yeddistributionF'(x)
for x — oo. For instance, it is shown in [25], that the asymptotic tahbvior of a
stable law is Pareto wheh< « < 2. Defining when exactly this asymptotic behavior
starts seems to be a tough problem (see [20]), as it deperagyhen the parame-
terization that is used to model the distribution (in thegpagetric context). We just
pretend here, that the upper cutoff scalg,. below which/W(s) behaves likes* is
also determined by this cutoff value &f separating the tail behavior (as a Pareto law
for instance) from théodyof the distribution. We illustrate this with a compound dis-
tribution, made out of a uniform distribution faK | < § anda—stable distribution for
|X| > 6. We show with this simple example (see Figure 4.4.2), thatubper cutoff
scale is of order:

Smax = 01 (53)

whered marks the transition from body to tail behavior in the dtattion. In practical
applications one might choogefrom prior knowledge (rendering the estimator semi-
parametric) or estimatgitself from the scaling plots (see Figure 4.4.2).
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Beyond this upper limit, the wavelet estimatog W(s) decays with slope-1.
This particular value of the slope depends only upon theiligton we have chosen
for the body of our compound distribution. In our examples tiform distribution
has negative moments only fpr> A~ (X) = —1. That is precisely this bound that is
estimated in 4.4.2, when > s,,... To support our claim, we simply follow the same
lines as for the tail estimator (35) : Givétx (z) ~ |z|"~!,  — 0, then

6 d.s
]EW(S):A \I/(sx)PX(a:)dxz/o U(x)|s tz["" s da,

and recalling thafv is band-limited, we get:

EW(s) = 877/ U(x)|z|""tdz, Vss.t.7 < s
0

~ Bws’y.

The same value foh~ (X) would have been estimated, if instead Xfdirectly
we had analyzed the new random variable= X —! as discussed in Section 3.4, and
estimated\*(Y) = —\~(X) from the tail decay of the transformed distribution.

This observation bears a convenient consequence as fagagveemoments are
concerned: We can fully exploit the behaviorﬁ(s) for s > smax, leading us to a
simple estimator oA~ in (2). To illustrate this, we now choose a compound process
similar to before but replace the uniform distribution féf| < § with a Gamma dis-
tribution of paramete® < +v < 1. The density of the Gamma distribution behaves as
| - |7~1 around the origin, whence negative moments exist exactlpégative orders
p > A~ = —. Therefore, we estimate the slopelof I//V\(s) for s > spax = 61 and
compare this estimate against the theoretical value= —v (see table 2).

To summarize, giverk i.i.d. random variable§X,, j = 1,--- K}, the wavelet
estimator (32) behaves like:

° /1/17(5) ~ SNlP, for s < spin = (man{Xj})il,

— . .
o Wi(s) ~ s, for smin < 8 < Smax, Wheres.x corresponds to the inverse of

the cut-off value separating the tail from the body of theerdng distribution,
° /W(s) ~ s7P  fors > smax.
This is impressively demonstrated in Figure 4.4.2. In fingthtp™ and p~ can be

deduced from alinear regression o /W(s) versudog s, over the corresponding scale
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Figure 2: SCALING REGION AND CUTOFF SCALES Choosing the scale too small, the resolu-
tion is fine enough for the wavelet to analyze the individual exponentiai$dira the estimator
é. According to section 4.4.1 the wavelet coefficients decay (at leastpwitbnentV,,. Choos-
ing the scale too large, the estimator samples the body instead of the tail adttitgution; thus,
the wavelet coefficients adhere to a powerlaw with exponent

intervals. As elaborated in section 3 choosing an apprtgpwavelet and according to
corollary 6, we have.™ = p™ and\~ = p~ whenever these numbers are smaller than

2;in generalp+ < At < |p*] + 1 and similar forA—.

4.5 Choice of the wavelet

The theoretical results of section 3 form the basis of oumedor. For them to hold
the analyzing wavelet is required to have a semi-definite Fourier transform as well
as a number of vanishing momen¥s, larger tharf{g. »(0).

In practice, we suggest to start with a low regularity watslech as the second
derivative of the gaussian windoy(¢), corresponding tav,, = 2. If the slopeﬁ1
obtained from the linear regressionlog ﬁ/\(s) versuslog s is smaller thanV,, = 2,
then corollary 2 immediately posits that the positive catiorderA™ is equal top™.
Now, if the measured sIo@ equalsVy, = 2, we need to verify whether the regularity
pT is actually larger than two or not.

To this end, we increase the number of vanishing momafts= p of ¥,(¢),
and repeat the estimation pf- for increasing integep as long as the sIopE hits
the boundN,. Once we get a;; < Ny, we should recall corollary 6 which only
guarantees that* can not exceedp™| + 1. This could be of interest in itself for

model verificatioA.

5In [9] and [24], we elaborate on how to use fractional wavetetget a more accurate estimate 0.
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Despite all this, in all our experiments, we observed thabtisicestimatep™ ob-
tained withV,, > Hge. (0) already accurately estimatas on its own. In particular,
we never encountered the case < \™ < |pT| + 1, that indeed, would necessitate
the more refined procedure described in [9, 24], to idenki&/dharacteristic exponent
precisely.

5 Applications

Application of particular interest in this context are thergmeter estimation of stable

laws as well as the estimation of the multifractal partitionction.

5.1 Estimating Stable and Gamma Parameters

To set notation we recall some classes of distributions kvelvn in the literature, that

we will use to illustrate our characteristic exponent eation

Pareto. A Pareto densityx is a simple power law function that take on the form

apz= 1 if x> pu,
px () ={ o olse, (54)

with « the shape parameter, andhe position parameter. A random variablewith
Pareto distribution, has positive-th order moments existing only for orders< «,
while all negative orders moments exist#s> ; > 0 almost surely. The median is
p2'/ and ifa > 1 then the mean exists and equils = pa /(o — 1).

Stable. Stable laws form a class of heavy tailed distributions, fbiok there exists
an abundant literature (see e.g. [25] for a detailed intttida). A random variable
X follows a stable law that we denof.S(o, 3, 1), if and only if its characteristic
function reads:

Efexp(iuX)] = exp(—0®[u]*(1 — iBuwa(t)) + i), (55)

wherew,, (t) = tan(rasgn(t)/2) for a # 1 andw; (t) = —(2/7)sgn(t) log |¢].
Although there exists no closed form for stable distribogi@xcept for a handful

of special cases, stable laws have a tail behavior that capp@ximated as a Pareto
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distribution (54). Indeed, [25, Property 1.2.15] reads BisX ~ S,(o, 3, 1) with
0 < a<2then

lm AP[X > ] = Ca#aa
. 1-8
lim APIX < N = Co— ot (56)

wherel/C, = [;° 2~ sin(z)dz depends only om.

The indexa is sometimes referred to as the characteristic exponethteo$table
law, and for our purpose, it constitutes the most importarameter since absolute
moments of order are finite exactly for € (—1,a) (0 < a < 2). Fora = 2 we
recover the special case of Gaussian distribution, witktisj moments at all orders
r > —1. The parameter indicates scale, sinc& ~ SaS(o, 3, 1), thenaX ~
SaS(ao, 3,au) (a > 0). Fora = 2 we haves? = var(X)/2 while for o < 2 the
second momenlE[X?] is infinite and the variance is not defined. The paramgter
defines position in the sense thakif~ SaS(c, 8, 1) thenX +¢ ~ SaS(o, 8, n+c).
Provided thaty > 1 we may be even more explicit and identjfyas the expected value:
IE[X] = u. However, in the case < 1 the mearlE[X] is not even defined; as the
most prominent example we mention the Cauchy distributiinally, the parameter
8 provides a measure for the skew, more precis&lyis symmetrical if and only if
6 = 0; moreover, if this is the case then (55) reduces to (6).

Gamma. The last case we will comment on is the Gamma distributionakdom
variableX has Gamma distribution if

In the above; andc are positive numbers, and= ¢”/T'(y), with T the generalized

factorial function. The special case= n/2, ¢ = 1/2 with n an integer, corresponds
to the Chi-square density with degrees of freedom, and far= 2 it reduces to the

usual exponential density. As far as moments are concethadks to the dominant
exponential decay in (57), all positive order moments exigtl in particuladEX =

v/candlEX? = (v + 1)/c2. The negative moments, i.e.,

M, = / Ae" P L exp{—cz}dr, r<O0, (58)
0
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Table 1: Estimation of the characteristic exponeiwf a stable law, using Koutrouvelis
procedure, McCulloch procedure and our wavelet based guvegusingV = 212
i.i.d. samples of a stable variable. Scale, position and gkgameters are fixed (= 1,

p = 0,5 = 0), anda varies in(0,2). Empirical means and standard deviations (in
parenthesis) on the estimates are based upon a 1000 rieakzsét.

«Q 0.2 0.6 1 1.4 1.8

A 0.196 0.58 1.0 1.46 1.74
(0.007) | (0.018) | (0.035) | (0.066)| (0.02)

a (Koutrouvelis) ND 0.60 1.0 1.403 1.80

(ND) | (0.007)| (0.009) | (0.013)| (0.012)

a (McCulloch) 0.59 0.605 1.0 1.40 1.80
(0.0018) | (0.009) | (0.009) | (0.016) | (0.022)

converge only for > —~.

For the above classes of distributions, Pareto, stable @mini, there exist effi-
cient procedures aimed at estimating the different setaadrpeters. In most cases,
these estimators are parametric estimators and they ttito be optimal (in the sense
of maximum likelihood) whenever the specific underlyingtdigition model and the
analyzed data distribution do match. Our estimator (32)ds-parametric, and it
should not be expected to outperform a parametric estinmatdhe distribution it is
tailored for. This is for instance very clear on the experitsedepicted in Table 1.
Consideringh i.i.d. samples of a stable variablé ~ SaS(o, 3, 1), we compare
our estimates (33) af against two well-known parametric estimators for stablesla
Koutrouvelis [16] and McCulloch [18] procedures.

Superiority of parametric estimators in this appropriatetext is not questionable.
However, in most real world applications, the true densigerlying the data to be
analyzed is rarely known, and very likely blind applicatiohparametric estimators
will produce aberrant results. A very illustrative exam@groposed in Table 2. We
consider a Gamma variahlé with shape parametér< v < 1, and form the new vari-
ableY = X!, From (58) we know that—th order moments of should only exist
for r < ~y. If we now compare the (empirical) densities derived botimft” and from
a stable variable with characteristic exponant v and skewness parameter= 1

(which ensures positivity sinee < 1) it is quite difficult to dissociate them (Figure 3).
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=== Inverse of a y-stable distribution
- = = o-stable distribution
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Figure 3: Empirical distributions of the random variablés= X —! andZ, whereX
follows a Gamma law withy = 0.6, and Z follows a stable law withh = 0.6 and
B = 1. For both cases\™ = a = . Axis are in logarithmic scale.

Yet, applying crudely stable law designed estimators, Kikatrouvelis or McCulloch,
to the raw datd’, yields very bad estimates = 7 = 2. In contrast, determin-
ing the characteristic exponeht (Y)) = —\~(X) from our wavelet-based regression
procedure (as described in Section 3.4), provides us wiitly fpood estimates of shape
parameters for Gamma distributions. Hence, because our non-paracrestimator
does not assume any a priori distribution for the data, itgamas favorably as a gen-
eral purpose tool to parametric estimators (see for instéime Hill estimator and its
various improvements [11, 22, 17, 3], tail estimators [4, 48d the comparative study

conducted in [2]).

Discussion and Conclusions

We itemize the three main results we have derived in thisipape

e We have established a theoretical connection between éxmanents namely
the critical exponeni™ which fixes the highest order of existing moments for a
random variable, the tail parameter of its probability rlsttion and the charac-
teristic exponenp™ which captures the Lipschitz regularity of the charactiris

function at origin.
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Table 2: Estimation of the shape exponeritom a Gamma variabl&’. Koutrouvelis
procedure, McCulloch procedure and our wavelet based guweeare applied to the
heavy tail transformed variablé = X!, N = 212 j.i.d. samples of Gamma variable
where used. Parameters= 1 is fixed, andy varies in(0,1). Empirical means and
standard deviations (in parenthesis) on the estimatesaszlupon a 1000 realizations
set.

~ 0.2 0.4 0.6 0.8
- 0.204 | 0.395 | 0.589 | 0.793
(0.007) | (0.008) | (0.015)| (0.03)

a (Koutrouvelis)|  ND 0.433 0.56 0.67
(ND) | (0.006)| (0.007)| (0.009)

a (McCulloch) | 0.513 | 0.514 | 0.583 | 0.72
(0.000) | (0.000) | (0.009) | (0.013)

e We proposed a wavelet based estimatondfand A\, that allows for an ex-
traordinarily simple implementation. Moreover, this cheteristic exponent es-
timator is non-parametric and does not assume any a priowlatge on the
underlying distribution, not even Pareto.

e From an application point of view, this estimator shows vesgful at character-
izing rare events (often responsible for divergence of mus)eand measuring
power law decays of fat tail distributions. We also mentaaeparticularly in-
teresting application of this estimator in the context ofdelselection in multi-
fractal analysis.
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